
W H I T E P A P E R

Data Masking
with the DevOps
Data Platform

000233

Industry Background
Data masking has never been more relevant. With data breaches continuing to make headlines and the emergence

of stringent data privacy regulations, it’s imperative that businesses across all industries manage their data with

greater caution and sensitivity. Not protecting personal, health, and sensitive information in compliance with data

privacy regulations, such as GDPR, LGPD, and HIPAA, results in heavy fines and lasting reputational damage.

Exacerbating the challenge of protecting confidential data is the rapid increase in enterprise data volumes,

particularly as data sprawls across environments used for development, testing, analytics, and other “non-production”

use cases. Recent research estimates that for every copy of production data, businesses typically create over ten

copies that multiply their overall surface area of risk. Security-minded organizations are adopting data masking as a

solution for protecting these copies. In fact, masking technology is fast becoming a part of the reference architecture

for organizations seeking a holistic approach for managing and securing data across the entire enterprise.

Solution Overview
The DevOps Data Platform provides a comprehensive approach to data masking that meets

enterprise-class performance, scalability, and security requirements. Delphix enables businesses

to successfully protect sensitive data through these key steps:

 » Profiling Sensitive Data: Identify sensitive information such as names, email addresses, and

payment information to provide an enterprise-wide view of risk and to pinpoint targets for masking.

 » Securing Sensitive Data: Apply masking to transform sensitive data values into fictitious yet realistic

equivalents, while still preserving the business value and referential integrity of the data for use

cases such as development and testing. Unlike approaches that leverage encryption, masking not

only ensures that transformed data is still usable in non-production environments, but also entails

an irreversible process that prevents original data from being restored through decryption keys or

other means.

 » Scaling and Integration: Extend the solution to meet enterprise security requirements and integrate

into critical workflows (e.g. for SDLC use cases or compliance processes).

Taken together, these capabilities allow businesses to define, manage, and apply security policies from

a single point of control across large, complex data estates. Delphix can enable global operations with

support for international addresses and character sets. Moreover, Delphix masking is quickly configured

and deployed via GUI-driven workflows without requiring any specialized programming expertise or

lengthy services engagements.

002 Data Masking with the DevOps Data Platform

How Delphix Masking Works
An instance of the Delphix DevOps Data Platform—a Delphix “engine”—is a self-contained operating

environment and application that is provided as a virtual appliance certified to run on a variety of

platforms including VMware, AWS, and Microsoft Azure. Delphix’s graphical interface can be

accessed from web browsers including Internet Explorer, Firefox, or Chrome. It has a robust role-based

controls system enabling organizations to apply fine-grained permissions over what users have

access to and what tasks they can and cannot perform.

003Data Masking with the DevOps Data Platform

LDAP /
MS Active Directory

Optional Integrations

RESTful API

Web GUI
Firefox, Internet
Explorer, or Chrome

Files
CSV, etc.

Source/Target
Databases

Email Server

Scheduling Software
(Control-M, etc)

HTTPS

HTTPS

SFTP / FTP JDBC

SMTP

HTTPS WS

Profiling Sensitive Data
After connecting to a supported data source, Delphix identifies what data should be secured. Sensitive

data discovery is performed using two different methods, column level profiling and data level profiling.

Column Level Profiling

Column level profiling uses regular expressions (regex) to scan the metadata (column names) of the selected

data sources. There are several dozen pre-configured profile expressions designed to identify common

sensitive data types (Social Security numbers, names, addresses, etc). Users also have the ability to write their

own profile regular expressions.

Example: First Name Expression <(?>(fi?rst)_?(na?me?)|f_?name)(?!\w*ID)>

Data Level Profiling

Data level profiling also uses regex, but to scan the actual data instead of the metadata. Similar

to column level profiling, there are several dozen pre-configured expressions and users can add their own.

US Phone No. Expression < ((\(?\b[0-9]{3}\)?[-.]?[0-9]{3}[-.]?[0-9]{4}\b)(?<![0-9]{6}[.][0-9]{4}))>

Delphix comes prepackaged with over 50 profile expressions developed after validation with dozens of

F500 customers to help businesses discover over 25 types (account numbers, addresses, etc.) of sensitive

data using both column and data level profiling.

004 Data Masking with the DevOps Data Platform

Examples of Data Discoverable with Pre-Built Profiler Expressions

Account Numbers

Physical Addresses

Beneficiary ID

Biometrics

Certificate ID

City

Country

Credit Card

Customer Number

Date of Birth

Driver License Number

Email

First Name

IP Address

Last Name

Location

Plate Number

PO Box Numbers

Precinct

Record Number

School Name

Security Code

Serial Number

Signature

Social Security Number

Tax ID

Telephone Number

VIN Number

Web Address

Zip Code

Profiling jobs can be executed across multiple sources to provide businesses with an enterprise-wide

view of sensitive data risk. When a data item is identified as sensitive, Delphix recommends specific

masking algorithms to be used for securing the data.

Application and Regulation-Specific Profiling Templates

Delphix also offers profiling templates to identify data for specific application types (e.g. SAP, Oracle EBS, Salesforce) or data

relevant to specific privacy regulations (e.g. GDPR, HIPAA). Profiling templates encompass sets of regular expressions for

finding data commonly associated with apps/regulations, or a pre-built inventory of fields that Delphix needs to mask.

By adding additional intelligence to the profiling process, businesses can eliminate manual discovery and validation,

allowing them to quickly and accurately mask the right fields with the correct algorithms.

005Data Masking with the DevOps Data Platform

006 Data Masking with the DevOps Data Platform

Securing Sensitive Data
Delphix’s primary method for securing data is masking. Masking algorithms create a structurally

similar but fictitious version of data that can be used for purposes such as application

development and testing. Masking protects the actual sensitive information while generating a

functional substitute for occasions when the real data is not required.

 » Delphix Masking – Is Irreversible – Masked data cannot be “reverse engineered” and

restored to its original unmasked state.

 » Creates Results Representative of the Source Data: The output of Delphix masking

resembles production data for non-production purposes. This could include geographic

distributions, credit card distributions (e.g. leaving the first 4 numbers unchanged, but

scrambling the rest), or maintaining human readability of (fake) names and addresses.

 » Preserves Referential Integrity: Delphix has the ability to mask data consistently to

maintain referential integrity. If an account number is a primary key and scrambled as

part of masking, then all instances of that account number linked through key pairs will be

masked identically. Additionally, the Delphix platform scales horizontally so that masking

algorithms will preserve referential integrity across multiple, heterogeneous data sources

(see Scaling and Integration).

007Data Masking with the DevOps Data Platform

Mapping Algorithm Framework

A mapping algorithm allows users to state what values will replace the original data. It sequentially

maps original data values to masked values that are pre-populated to a lookup table through the

Delphix user interface. To satisfy any uniqueness requirements, the algorithm maps data in a 1:1

fashion. Mapping produces no collisions in the masked data and the algorithm always matches

the same input to the same output. For example “David” will always become “Ragu” with no other

names masking to “Ragu.” The algorithm checks whether an input has already been mapped; if so,

the algorithm changes the data to its designated output. Mapping algorithms handles arbitrary string

data and preserves referential integrity.

Once sensitive data fields have been identified, Delphix

automatically recommends an out-of-the-box algorithm

for securing the data. These algorithms fall into one of the

following frameworks:

Original Values

David

Melissa

David

John

Joan

Masked Values
First Name

Ragu

Jasmine

Ragu

Ragu

Jessica

Original Values
First NameFirst Name

David

Melissa

David

John

Joan

Masked Values
First Name

Ragu

Jasmine

Ragu

Peter

Jessica

Original Values

David

Melissa

David

John

Joan

Masked Values
First Name

Ragu

Jasmine

Ragu

Ragu

Jessica

Original Values
First NameFirst Name

David

Melissa

David

John

Joan

Masked Values
First Name

Ragu

Jasmine

Ragu

Peter

Jessica

Secure Lookup Algorithm Mapping Algorithm

Secure Lookup preserves referential integrity: “David”

is consistently masked to” Ragu”; It also creates

collisions: both “David” and “John” mask to “Ragu.”

Mapping preserves referential integrity: “David” is

consistently masked to “Ragu”; It satisfies uniqueness

constraints: no other value will be masked to “Ragu”

except “David.”

008 Data Masking with the DevOps Data Platform

Un-Masked Data

Chinese:

Indian Brahmi:

王大中

जॉन स्मिथ

Masked Data

Chinese:

Indian Brahmi:

张小明

बॉब जोन्स

Un-Masked Data

One Character:

One Character:

One Character:

One Character:

Adam

aDam

ADAM

adam

Masked Data

One Character:

One Character:

All Uppercase:

All Lowercase:

James

JAmes

JAMES

james

Secure Lookup

This is the most commonly used type of algorithm. It is easy to generate and works with different

languages. When this algorithm replaces real, sensitive data with fictional data, it is possible that it

will create repeating data patterns, known as “collisions.” For example, the names “Tom” and “Peter”

could both be masked as “Matt”. Because names and addresses naturally recur in real data, this

mimics an actual data set. Secure lookup handles arbitrary string data and preserves referential

integrity. However, if you want the Masking Engine to mask all data into unique outputs, you should

use Character Mapping.

Character Mapping Framework

This algorithm maps text values, defined by a set of character groups, to other text values generated

from the same character groups. Mappings are calculated algorithmically, so it is not necessary to

provide the set of mapping values. The algorithm preserves any characters not assigned to a group.

Any characters from the first Unicode plane can be mapped - this covers most characters used in

modern languages. Other (supplementary) characters can only be preserved.

Description: Ability to mask non-ASCII characters

009Data Masking with the DevOps Data Platform

Original Values Masked Values

3462 9272 9272 659120224147 2022 6591

Mask

Mask
Mask

Ignore

Original Values

94205

94010

60093

Zip

Restored Values

94205

94010

60093

Zip

Tokens

5HguHIwaEkeAbLBX40Kmn==

DOM+HQ3J4Hi93PsE/tM0eF==

kkIEXT2z1tqwmmy6KymB4F==

Tokenize
data

Partner processes data with original values obscured

Re-identify
data

Example Masking a credit card number in segments, preserving last 4 digits

Segment Mapping Algorithm Framework

Segment mapping algorithms produce no overlaps or repetitions in the masked data. They let users create

unique masked values by dividing a target value into a maximum of 36 segments and masking each segment

individually. Businesses might use this method for information involving unique values, such as Social Security

numbers, primary key columns, or foreign key columns. Segment mapping handles strings of a known format

and preserves referential integrity.

Binary Lookup Algorithm Framework

A binary lookup algorithm is similar to the secure lookup

algorithm but is used when entire files are stored in a

specific column. For example, if a bank has an object

column that stores images of checks, Delphix can use a

binary lookup algorithm to mask those images. Delphix

cannot change data within images themselves such

as the names on X-rays or drivers licenses. However,

the algorithm can replace all such images with a new,

fictional image. This algorithm masks binary columns

with blob, varbinary, or image data and preserves

referential integrity.

Tokenization Algorithm Framework

A tokenization algorithm is the only type of algorithm

that allows for the reversal of a masked value back to

its original value. For example, Delphix can a tokenize

data before it is sent to an external vendor for analysis

allowing the vendor to identify accounts that need

attention without having any access to the original,

sensitive data. Once the vendor provides feedback,

tokenized values can be reversed, enabling the data

owner to take action on the appropriate accounts.

Like mapping, a tokenization algorithm creates a unique

token for each input such as “David” or “Melissa.” The

actual data values are converted into tokens that no

longer convey any meaning. Tokenization handles

arbitrary string data and preserves referential integrity.

0010 Data Masking with the DevOps Data Platform

Data Replacement 2/10/2021 6/9/1932

100
day
range

Data Shift

10 days

2/10/2021

2/20/2021

Start Date

Multi-Column Date
2/10/2021 11/10/1988

End Date

6/8/2021 12/15/1997

Date Shift Framework

This algorithm masks date values to different dates based on a specified range around the input

value. Masked values are calculated algorithmically using the algorithm‘s key, so rekeying the

algorithm will cause different outputs to be generated for each input. All valid input values will be

masked to a new value, and the new value will never match the input.

Date Replacement Framework

Delphix enables masking a date value based on specified beginning and end dates. Masked output

values are calculated algorithmically using the algorithm‘s key, so rekeying the algorithm will cause a

different output value to be generated for each input. It is also possible for an input to be masked to itself.

Description: The algorithm takes into account that three consecutive months are what is important to preserve.

This could also be a specified number of hours, seconds, days, weeks, or years.

Description: In this example the birth year range needed to stay in 1950-1959.

Dependent Date Shift Algorithm

When a dependency exists between the two dates that must be maintained, this algorithm provides a

method to manipulate dates together. Examples of this include date of admission and date of discharge

or date of birth and date of death. If we were to attempt to mask these dates independently, we may

end up with a situation where a later date such as date of discharge, was masked to be earlier than

date of admission. If we were dealing with date of birth and date of death we may end up masking the

values in a way that turns an 80 year old into a 5 month old.

Description: In this example, the rule was to always have the year of discharge four years after the year of admission.

0011Data Masking with the DevOps Data Platform

Original Values

Customer placed order on 11/23/18.
Phone number is (949) 220-1423

Contact the vendor at 916-523-1923
before issuing purchase order

Notes

Masked Values

Customer placed order on 11/23/18.
Phone number is XXXXXXXXXX

Contact the vendor at XXXXXXXXXX
before issuing purchase order

Notes

Un-Masked Data

Address:

City:

Credit Card: 4316 3819

Masked Data

Address:

City:

Credit Card: 4316 4231 7582 993129520369

Mask last 12 digits

Description: Masking credit card numbers can keep the starting digits preserved or mask the entire number.

Payment Card Framework

The payment card algorithm masks payment card numbers based on the starting digits to be preserved

and the minimum number of positions to be masked. This framework is built on top of the Character

Mapping Algorithm Framework with a character set of [0-9]. All characters outside of this character

group remain unmasked. Masked values are calculated algorithmically using the algorithm‘s key, so

rekeying the algorithm will cause different outputs to be generated for each input. The last digit may

remain the same if the calculated check digit is equivalent to the last digit of the input. Any inputs with

more than one digit will never mask to the original value.

Free Text Algorithm Framework

This algorithm removes sensitive data that appears in free-text columns such as “Notes.”

For example, the algorithm can look for predefined strings such as “St,” “Cir,” “Blvd,” and other words

that suggest an address. It can also use pattern matching to identify potentially sensitive information.

Once sensitive information within the text has been identified, the algorithm can hide or show

information by displaying either a “black list” (designated values will be removed/redacted) or a

“white list” (only designated material will be visible and other material will be removed/redacted).

This algorithm handles arbitrary string data and does not preserve referential integrity.

Example Redacting phone numbers in a ‘Notes’ column

Creating New and Custom Algorithms
Delphix gives businesses the ability to easily define their own masking routines if none

of the default algorithms meet their requirements. Users first select an algorithm

framework as a basis for a new custom algorithm, then define and modify algorithm

properties through a GUI-driven process. For example, users can specify new lookup

tables for the secure lookup algorithm, customize segments for a segment mapping

algorithm, and determine value ranges for the min max algorithm framework.

If business requirements demand that data

be transformed in a way that is not supported

by the baseline product, a custom algorithm

known as a mapplet can be created by

Delphix Professional Services and imported

into the Delphix platform. Mapplets are

realized as JavaScript functions conforming

to a specific format and are expected to

compute a masked value given the inputted

original value.

0012 Data Masking with the DevOps Data Platform

Masking SDK
The Masking SDK enables customers and partners to develop algorithm extensions using

industry-standard tools, without the detailed Delphix masking product internals knowledge

currently required to write custom algorithms. This provides customers and partners a

direct means to build new masking algorithms in cases where standard Delphix algorithms

cannot be easily adapted to meet customer requirements.

Select Algorithm Create Segment Mapping Algorithm
Algorithm Name

Secure Lookup Algorithm

Mapping Algorithm

Binary Lookup Algorithm

Tokenization Algorithm

Min Max Algorithm

Data Cleansing Algorithm

Free Text Redaction Algorithm

Description

Number of Segments

Ignore Characters Separated by comma (,)

Real Values
Min # Max # Range #

Maskl Values
Min # Max # Range #

Numeric 2

Segment 1

Real Values
Min #

Preserve Original Values

Starting Position Length

Add

Max # Range #

Ignore comma (,) Add Contol Characters

Maskl Values
Min # Max # Range #

Numeric 2

Segment 2

Secure Mapping Algorithm

2

Creating a Custom Segment Mapping Algorithm

Executing Masking Jobs
Masking jobs are created via a GUI-driven workflow in which

the user selects a target database, algorithms to use based on

profiling results, resources allocated to the job, and, optionally,

SQL statements to be run before or after execution of the job.

Delphix can process and output masked data values in two

different ways:

In-Place Masking: An instance of Delphix will read data from a

source, secure the data within the engine and then update the data

source with the secure data. In-place masking only transforms the

columns flagged as containing sensitive information, leaving

the other columns alone. Since this method potentially requires

copying production data into a non-production zone while

the masking takes place, sensitive data might exist in the

non-production zone until the masking is complete.

On-the-Fly Masking: Delphix reads data from the data source,

secures the data in the engine and then places the secure data

in a target source (different from the location of the original

data source) in an Extract Transform Load (ETL) process.

Delphix extracts the data from a source environment, such as

a production copy, gold copy, or disaster recovery copy (only

reading from a database not an archived file). It masks the data

in the memory of the application server on which it resides and

then loads the masked data to the target environment.

Delphix does not modify the original source data; only the

target data changes.

Key variables that influence masking performance are the

number of tables to be masked, rows per table, columns per

table, masking algorithm per column, data type, avg size per

column, as well as indexes, constraints, and triggers on the

masked table.

0013Data Masking with the DevOps Data Platform

Target Database

Read (SQL Select) Write (SQL Update)

1 3

2

Source
Database

Target
Database

Read (SQL Select) Write (SQL Update)

1 3

2

Figure 2. In-place masking

1. Read original unmasked data from target

2. Transform original values in memory

3. Update sensitive data values with mask

 values on target

Figure 3. On-the-fly masking

1. Read original unmasked data

2. Transform data values in memory

3. Write masked data to target

Scaling and Integration
Delphix allows for multi-engine deployments

that enable businesses to consistently mask

data at scale across multiple, heterogeneous

sources. In these scenarios, Delphix facilitates

the synchronization of information defining

masking jobs across multiple masking engines.

This information can include the algorithms to

be executed, data source connectors, metadata

inventories, and the set of tables or files that an

engine will run profiling, masking, or tokenization

against. Engine synchronization provides a

flexible way to move these masking “objects”—

the algorithms and related information associated

with a masking job—necessary to run an identical

job on another engine.

There are two specific scenarios in which

organizations benefit from orchestration between

multiple masking engines. In the first, a multi-

engine implementation addresses the problem of

horizontal scale— achieving consistent masking

across a large set of data sources by deploying

multiple masking engines. The second architecture

addresses the desire to author algorithms on one

engine, to test and certify them on another, and

finally to deploy them to a production engine.

Distributed Execution

For many organizations, the size of the profiling and masking workloads requires more than one

production masking engine. These masking engines can be identical in configuration or be partially

equivalent depending on the organization’s needs. Syncable objects are authored on one engine,

labeled “Control Masking Engine” in the diagram below. Those objects are then distributed to

“Compute Masking Engines” using engine synchronization APIs. The synchronized algorithms and

masking jobs will produce the same masked output on all of the engines, thus enabling large data

estates to be masked consistently.

0014 Data Masking with the DevOps Data Platform

List Syncable Objects

Export Global Objects

Export Masking Jobs

Import Global Objects,
then Masking Jobs

Script/UserControl Masking Engine

(Encrypted)

(Encrypted)

Import API
Endpoints

(Encrypted)

Import API
Endpoints

Secure Lookup KEY

Binary Lookup KEY

Tokenization KEY

Database Connector

Database Ruleset

Masking Job

Compute Masking Engine

Compute Masking Engine

Figure 4. Synchronizing masking jobs across multiple engines

Software Development Life Cycle (SDLC)

Using an SDLC process often requires setting up multiple masking engines, each for a different

part of the cycle (Development, QA, Production). Here, algorithms are authored on the

first engine, labeled “Dev Engine” in the diagram below. When the developer is satisfied,

the algorithms are exported from the Dev Engine and imported to the QA Engine where they

can be tested and certified. Finally, they are exported from the QA engine and imported to the

Production Engine.

Figure 5. Coordinating engines across SDLC stages

API Integration

Delphix includes a robust, RESTful API set that allows teams to access and manipulate

a programmatic representation of masking objects and resources using a predefined

set of operations. The APIs use JSON (JavaScript Object Notation) to ingest and return

representations of the various objects used throughout various operations. JSON is a

standard format and, as such, has many tools available to help with creating and parsing

request and response payloads, respectively. Businesses can leverage the APIs to

programmatically control Delphix profiling and masking capabilities, integrating them

into workflows such as:

 » Triggering profiling or masking jobs as data changes, or as new data enters into

data repositories

 » Creating customized regulatory compliance reports that log masking activities

 » Connecting to enterprise monitoring systems such as Splunk

 » Synchronizing masking jobs across multiple Delphix engines

0015Data Masking with the DevOps Data Platform

List Syncable Objects

Export Global Objects

Export Masking Jobs

Import Global Objects,
then Masking Jobs

Script/UserDev Engine

(Encrypted) (Encrypted) (Encrypted) (Encrypted)

Export Endpoints Export EndpointsImport Endpoints Import Endpoints

Secure Lookup KEY

Binary Lookup KEY

Tokenization KEY

Database Connector

Database Ruleset

Masking Job

List Syncable Objects

Export Global Objects

Export Masking Jobs

Import Global Objects,
then Masking Jobs

Script/UserQA Engine

Secure Lookup

Binary Lookup

Tokenization

Database Connector

Database Ruleset

Masking Job

Production Engine

Secure Lookup

Binary Lookup

Tokenization

Database Connector

Database Ruleset

Masking Job

Data Source Support
Delphix masking supports profiling, masking, and tokenizing a variety of different data

sources including distributed databases, mainframe, PaaS databases, and files. Delphix

breaks up support for data sources into two categories:

Delphix Connectors: These apply to data sources that a masking engine can connect to

directly using built-in connectors that have been optimized to perform masking, profiling

and tokenization. Delphix has dedicated masking connectors for the following data sources:

 » Distributed Database: DB2 LUW, Oracle, MS SQL, MySQL, SAP ASE (Sybase),

PostgreSQL, MariaDB

 » Mainframe/Midrange: DB2 Z/OS, DB2 iSeries, VSAM

 » PaaS Database: AWS RDS Oracle

 » Files: Excel, Fixed Width, Delimited, XML

Other data sources can be masked by uploading JDBC drivers to Delphix engines.

File Extract Mask and Load Sources (FEML): This method is used to mask and tokenize

data sources that do not have dedicated Delphix connectors. FEML uses existing APIs

from data sources to extract the data to a file, mask the file, and then use APIs to load

the masked file back into the database. Additional data sources such as Informix,

Azure SQL, Hadoop, Teradata, and many others can be masked using FEML.

0016 Data Masking with the DevOps Data Platform

Towards Secure Data Delivery
Collectively, Delphix masking capabilities allow businesses to define, maintain, and deploy

a set of security policies from a single point of management. Delphix codifies what type of

information is deemed sensitive based on different standards or regulations, determines

exactly how that information is secured, and records security actions by logging all masking jobs.

The Delphix DevOps Data Platform also combines data masking with the ability to

virtualize data. Delphix can provision virtual copies of production data, apply masking

within the confines of the production zone, then automatically deliver multiple masked

copies to downstream environments for development, testing, analytics, or other non-

production use cases. This supports efforts to accelerate key business processes

while also increasing data governance: Teams can easily control who has access to

what data, when, where, and for how long.

0017Data Masking with the DevOps Data Platform

Non-Production Zone

Production Zone

Production Source On-Premise

Cloud

1

3

2

Figure 6. Deliver masked, virtual data

copies to a non-production zone

1. Sync with source prod zone

2. Mask sensitive data

3. Deliver masked data to non-prod

 zone and provision copies

Delphix is the industry leading data company for DevOps.

Data is critical for testing application releases, modernization, cloud adoption, and AI/ML programs. We provide

an automated DevOps data platform for all enterprise applications. Delphix masks data for privacy compliance,

secures data from ransomware, and delivers efficient, virtualized data for CI/CD.

Our platform includes essential DevOps APIs for data provisioning, refresh, rewind, integration, and version

control. Leading companies, including UKG, Choice Hotels, J.B. Hunt, and Fannie Mae, use Delphix to accelerate

digital transformation. For more information, visit www.delphix.com or follow us on LinkedIn, Twitter, and Facebook.

©2021 Delphix

000233

Data Masking
with the DevOps
Data Platform

http://www.delphix.com
https://www.linkedin.com/company/delphix/
https://twitter.com/delphix
https://www.facebook.com/DelphixCorp

